Tools for the High Penetration of PV Systems in the EU Electrical Networks:
Results of PVCROPS Project
Luis Narvarte
Solar Energy Institute – Polytechnical University of Madrid
Objective 1:
“enhance the integration of PV generation into the grid and demonstrate that PV could provide up to 12% of the EU electricity demand by 2020”

This means percentages of up to 30% in Southern European countries

Needs:
• technical solutions to avoid disturbances induced by the PV power fluctuations into the grid
• PV systems to assist the grid management when the DSO or the TSO ask for it.

Technical solutions:
• energy management and storage control in PV systems
• prediction and mitigation of PV power fluctuations
SET PLAN SEII

Objective 2:
“Improvement in the performance, reliability and lifetime of PV systems”
“Reduction in the cost of PV systems”

This means Reduction in the LCoE of PV generation

Needs:
• Increase the performance of PV systems

Technical solutions:
• advanced technical specifications in the design and procurement stage
• field testing at the commissioning stage
• monitoring for the diagnosis of hidden problems at the operational stage
PV CROPS – Fields of work

Reduction of the LCoE of PV generation

- Robust modelling, advanced simulation and design optimization
- Prediction of system output with respect to solar resource, local weather and system behaviour
- Integration of energy management and storage strategies for PV plants and BIPV
- Monitoring, real-time follow-up and advanced diagnoses of performance
- Hardware, software and contractual testing solutions

Enhancement of the integration of PV into the grid
Outstanding Results

1- Advanced design and simulation tool + Technical specifications and Quality control procedures

- Energy yield estimation
- Financing according P_{90}
- Low uncertainty

Contractual frameworks

- Quality control linked to payments
- Assign responsibilities
- Technical specifications
- Quality control procedures
- Parameters guaranteed by manufacturers

SISIFO

- Open source tool
- Free available
- Just inputs guaranteed by manufacturers
- and of course:
 - models tested in more than 70 PV plants
 - Shadowing models
 - trackers
 - …

Available at: www.sisifo.info

Bankability

- Energy yield estimation
- Financing according P_{90}
- Low uncertainty

Testing kits

- + hot spot rejection criteria
- + Spin-off

Available at: www.pvcrops.eu
Outstanding Results

2- Prediction of PV power production/fluctuations

PV power fluctuations characterization
- 1s PV power data in a PV fleet from 2008
- Synchronized

Mitigation of PV power fluctuations
- by PV plant size
 \(G(t) \)
 Smoothing due to area
 \(\sqrt{S} \)
 \(\Delta t \) 1 minute: 1 MW \(\rightarrow \) 80%
 40 MW \(\rightarrow \) 54%

- by PV plant aggregation
 \(G(t) \)
 Smoothing due to aggregation
 \(\sqrt{N} \)
 \(\Delta t \) 1 minute: 1 PV plant \(\rightarrow \) 80%
 6 PV plants \(\rightarrow \) 30%

Tollboxes for prediction
- Parametric: PV fleet model
- Non-parametric
 Quantile Regression Forest
 MBE < 1.3%; MAE < 9.5%

Open-source toolbox

Available at
http://vps156.cesvima.upm.es:3838/predictPac/
Outstanding Results

3- Integration of Batteries and Energy Management Strategies

Development of energy management strategies

- Ramp rate control
- Maximizing economic output
- Self-consumption
- Peak shaving / constant power
- ...

Battery sizing
Worst fluctuation model

- Strategy

Validation in demonstrators

<table>
<thead>
<tr>
<th>Li-ion</th>
<th>VRB</th>
</tr>
</thead>
<tbody>
<tr>
<td>5kW / 6h</td>
<td>10kW / 6h</td>
</tr>
</tbody>
</table>

- Toolboxes for sizing and simulating PV systems with batteries
- Specific hardware for the energy management

Available at: www.pvcrops.eu
Outstanding Results

4- Increasing the performance and reducing the cost of O&M

Automatic detection of Performance Failures

- Just energy meter readings
- No need of irradiation data

Huge database of BIPV production

- 30,000 BIPV systems

Performance failure indicator

- Stability in correct operation
- PR versus P2P

- No need of irradiation data
- Just energy meter readings
- Failure = P2P < threshold

Webservice for the automatic detection of performance failures

- Spin-off: Web PV
- www.webpv.net

Solar radiation data from PV systems

- Toolbox: www.SOWEDA.com
- on-line and free available (tilted radiation from weather information)
Increase of PR and reduction of LCeE

- Analysis of the state of the art of PR in Europe: PR= 76.5
- Increase due to:
 - Design tools
 - Automatic failure detection tool
- Increase of PR without increase of cost of PV system

<table>
<thead>
<tr>
<th>Scenario of improvement</th>
<th>Increase of PR due to our tools</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Design</td>
</tr>
<tr>
<td>Current P50 (PR= 76.5)</td>
<td>1.7%</td>
</tr>
<tr>
<td>Current P90 (PR= 83.8)</td>
<td>6.81%</td>
</tr>
</tbody>
</table>

Increase of penetration into the grid

- Energy management strategies for 20% penetration
- Prediction tools for higher penetration